ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (1)
  • 1995-1999  (1)
Collection
Publisher
  • Wiley-Blackwell  (1)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Particle and Particle Systems Characterization 12 (1995), S. 148-157 
    ISSN: 0934-0866
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Among the most important characteristic properties of disperse systems such as latices, pigments, ceramic materials or drug formulations are the particle size and the particle size distribution. To measure these quantities, several methods and measuring instruments based on different physical principles are available. These include turbidimetry, dynamic and static light scattering, electron microscopy with image analysis, ultra- and disc centrifugation, light diffraction and the electrical sensing zone method. All these measuring techniques are doubtless necessary because of the large product variety and the broad particle size range. However, some problems arise if different techniques are used and the results are compared uncritically without considering to the application range and the resolution of the methods. An extensive comparative test was therefore carried out using seven latices in the submicron range with defined monomodal, bimodal and hexamodal particle size distributions. The most important methods of determining average particle size values and particle size distributions were tested and compared. Of the methods to determine only average particle sizes, turbidimetry is the most efficient, followed by dynamic light scattering with cumulants evaluation. Static light scattering only yields accurate results for small particles with narrow particle size distributions. Of the methods to determine particle size distributions, ultracentrifugation and, somewhat less, disc centrifugation and electron microscopy with image analysis are the most efficient. Dynamic light scattering only yields reliable results in the case of small particles with narrow distribution curves. Light diffraction and the electrical sensing zone method are less suitable for the submicron range.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...