ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-07
    Description: In many parts of Europe, close-to-nature silviculture (CNS) has been widely advocated as being the best approach for managing forests to cope with future climate change. In this review, we identify and evaluate six principles for enhancing the adaptive capacity of European temperate forests in a changing climate: (1) increase tree species richness, (2) increase structural diversity, (3) maintain and increase genetic variation within tree species, (4) increase resistance of individual trees to biotic and abiotic stress, (5) replace high-risk stands and (6) keep average growing stocks low. We use these principles to examine how three CNS systems (single-tree selection, group selection and shelterwood) serve adaptation strategies. Many attributes of CNS can increase the adaptive capacity of European temperate forests to a changing climate. CNS promotes structural diversity and tree resistance to stressors, and growing stocks can be kept at low levels. However, some deficiencies exist in relation to the adaptation principles of increasing tree species richness, maintaining and increasing genetic variation, and replacing high-risk stands. To address these shortcomings, CNS should make increased use of a range of regeneration methods, in order to promote light-demanding tree species, non-native species and non-local provenances.
    Print ISSN: 0015-752X
    Electronic ISSN: 1464-3626
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-26
    Description: Echolocation is an active form of orientation in which animals emit sounds and then listen to reflected echoes of those sounds to form images of their surroundings in their brains. Although echolocation is usually associated with bats, it is not characteristic of all bats. Most echolocating bats produce signals in the larynx, but within one family of mainly non-echolocating species (Pteropodidae), a few species use echolocation sounds produced by tongue clicks. Here we demonstrate, using data obtained from micro-computed tomography scans of 26 species (n = 35 fluid-preserved bats), that proximal articulation of the stylohyal bone (part of the mammalian hyoid apparatus) with the tympanic bone always distinguishes laryngeally echolocating bats from all other bats (that is, non-echolocating pteropodids and those that echolocate with tongue clicks). In laryngeally echolocating bats, the proximal end of the stylohyal bone directly articulates with the tympanic bone and is often fused with it. Previous research on the morphology of the stylohyal bone in the oldest known fossil bat (Onychonycteris finneyi) suggested that it did not echolocate, but our findings suggest that O. finneyi may have used laryngeal echolocation because its stylohyal bones may have articulated with its tympanic bones. The present findings reopen basic questions about the timing and the origin of flight and echolocation in the early evolution of bats. Our data also provide an independent anatomical character by which to distinguish laryngeally echolocating bats from other bats.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Veselka, Nina -- McErlain, David D -- Holdsworth, David W -- Eger, Judith L -- Chhem, Rethy K -- Mason, Matthew J -- Brain, Kirsty L -- Faure, Paul A -- Fenton, M Brock -- MOP-89852/Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Feb 18;463(7283):939-42. doi: 10.1038/nature08737. Epub 2010 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Robarts Research Institute.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20098413" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Bone Conduction/*physiology ; Bone and Bones/anatomy & histology/*physiology ; Chiroptera/*anatomy & histology/classification/*physiology ; Ear/anatomy & histology/physiology ; Echolocation/*physiology ; Flight, Animal/physiology ; Fossils ; Larynx/*physiology ; Orientation/physiology ; Skull/anatomy & histology/physiology ; Tongue/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-06-26
    Description: Despite the fundamental contribution of the gut microbiota to host physiology, the extent of its variation in genetically-identical animals used in research is not known. We report significant divergence in both the composition and metabolism of gut microbiota in genetically-identical adult C57BL/6 mice housed in separate controlled units within a single commercial production facility. The reported divergence in gut microbiota has the potential to confound experimental studies using mammalian models. Scientific Reports 4 doi: 10.1038/srep05437
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...