ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-09-18
    Description: The stability of the Wnt pathway transcription factor beta-catenin is tightly regulated by the multi-subunit destruction complex. Deregulated Wnt pathway activity has been implicated in many cancers, making this pathway an attractive target for anticancer therapies. However, the development of targeted Wnt pathway inhibitors has been hampered by the limited number of pathway components that are amenable to small molecule inhibition. Here, we used a chemical genetic screen to identify a small molecule, XAV939, which selectively inhibits beta-catenin-mediated transcription. XAV939 stimulates beta-catenin degradation by stabilizing axin, the concentration-limiting component of the destruction complex. Using a quantitative chemical proteomic approach, we discovered that XAV939 stabilizes axin by inhibiting the poly-ADP-ribosylating enzymes tankyrase 1 and tankyrase 2. Both tankyrase isoforms interact with a highly conserved domain of axin and stimulate its degradation through the ubiquitin-proteasome pathway. Thus, our study provides new mechanistic insights into the regulation of axin protein homeostasis and presents new avenues for targeted Wnt pathway therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Shih-Min A -- Mishina, Yuji M -- Liu, Shanming -- Cheung, Atwood -- Stegmeier, Frank -- Michaud, Gregory A -- Charlat, Olga -- Wiellette, Elizabeth -- Zhang, Yue -- Wiessner, Stephanie -- Hild, Marc -- Shi, Xiaoying -- Wilson, Christopher J -- Mickanin, Craig -- Myer, Vic -- Fazal, Aleem -- Tomlinson, Ronald -- Serluca, Fabrizio -- Shao, Wenlin -- Cheng, Hong -- Shultz, Michael -- Rau, Christina -- Schirle, Markus -- Schlegl, Judith -- Ghidelli, Sonja -- Fawell, Stephen -- Lu, Chris -- Curtis, Daniel -- Kirschner, Marc W -- Lengauer, Christoph -- Finan, Peter M -- Tallarico, John A -- Bouwmeester, Tewis -- Porter, Jeffery A -- Bauer, Andreas -- Cong, Feng -- England -- Nature. 2009 Oct 1;461(7264):614-20. doi: 10.1038/nature08356. Epub 2009 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19759537" target="_blank"〉PubMed〈/a〉
    Keywords: Axin Protein ; Cell Division/drug effects ; Cell Line ; Cell Line, Tumor ; Colorectal Neoplasms/drug therapy/metabolism ; Heterocyclic Compounds, 3-Ring/pharmacology ; Humans ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; Proteomics ; Repressor Proteins/chemistry/*metabolism ; Signal Transduction/*drug effects ; Tankyrases/*antagonists & inhibitors/metabolism ; Transcription, Genetic/drug effects ; Ubiquitin/metabolism ; Ubiquitination ; Wnt Proteins/*antagonists & inhibitors/metabolism ; beta Catenin/antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-22
    Description: Recurrent mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 have been identified in gliomas, acute myeloid leukaemias (AML) and chondrosarcomas, and share a novel enzymatic property of producing 2-hydroxyglutarate (2HG) from alpha-ketoglutarate. Here we report that 2HG-producing IDH mutants can prevent the histone demethylation that is required for lineage-specific progenitor cells to differentiate into terminally differentiated cells. In tumour samples from glioma patients, IDH mutations were associated with a distinct gene expression profile enriched for genes expressed in neural progenitor cells, and this was associated with increased histone methylation. To test whether the ability of IDH mutants to promote histone methylation contributes to a block in cell differentiation in non-transformed cells, we tested the effect of neomorphic IDH mutants on adipocyte differentiation in vitro. Introduction of either mutant IDH or cell-permeable 2HG was associated with repression of the inducible expression of lineage-specific differentiation genes and a block to differentiation. This correlated with a significant increase in repressive histone methylation marks without observable changes in promoter DNA methylation. Gliomas were found to have elevated levels of similar histone repressive marks. Stable transfection of a 2HG-producing mutant IDH into immortalized astrocytes resulted in progressive accumulation of histone methylation. Of the marks examined, increased H3K9 methylation reproducibly preceded a rise in DNA methylation as cells were passaged in culture. Furthermore, we found that the 2HG-inhibitable H3K9 demethylase KDM4C was induced during adipocyte differentiation, and that RNA-interference suppression of KDM4C was sufficient to block differentiation. Together these data demonstrate that 2HG can inhibit histone demethylation and that inhibition of histone demethylation can be sufficient to block the differentiation of non-transformed cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478770/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478770/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Chao -- Ward, Patrick S -- Kapoor, Gurpreet S -- Rohle, Dan -- Turcan, Sevin -- Abdel-Wahab, Omar -- Edwards, Christopher R -- Khanin, Raya -- Figueroa, Maria E -- Melnick, Ari -- Wellen, Kathryn E -- O'Rourke, Donald M -- Berger, Shelley L -- Chan, Timothy A -- Levine, Ross L -- Mellinghoff, Ingo K -- Thompson, Craig B -- R01 CA078831/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- U54CA143798/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 15;483(7390):474-8. doi: 10.1038/nature10860.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22343901" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Adipocytes/cytology/drug effects/metabolism ; Animals ; Astrocytes/cytology/drug effects ; Cell Differentiation/drug effects/*genetics ; Cell Line, Tumor ; Cell Lineage/genetics ; DNA Methylation/drug effects ; Enzyme Induction/drug effects ; Gene Expression Regulation/drug effects ; Glioma/enzymology/genetics/pathology ; Glutarates/metabolism/pharmacology ; HEK293 Cells ; Histones/*metabolism ; Humans ; Isocitrate Dehydrogenase/antagonists & inhibitors/*genetics/metabolism ; Jumonji Domain-Containing Histone Demethylases/antagonists & ; inhibitors/deficiency/genetics/metabolism ; Methylation/drug effects ; Mice ; Mutation/*genetics ; Neural Stem Cells/metabolism ; Promoter Regions, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-31
    Description: Many neurodegenerative disorders, such as Alzheimer's, Parkinson's and polyglutamine diseases, share a common pathogenic mechanism: the abnormal accumulation of disease-causing proteins, due to either the mutant protein's resistance to degradation or overexpression of the wild-type protein. We have developed a strategy to identify therapeutic entry points for such neurodegenerative disorders by screening for genetic networks that influence the levels of disease-driving proteins. We applied this approach, which integrates parallel cell-based and Drosophila genetic screens, to spinocerebellar ataxia type 1 (SCA1), a disease caused by expansion of a polyglutamine tract in ataxin 1 (ATXN1). Our approach revealed that downregulation of several components of the RAS-MAPK-MSK1 pathway decreases ATXN1 levels and suppresses neurodegeneration in Drosophila and mice. Importantly, pharmacological inhibitors of components of this pathway also decrease ATXN1 levels, suggesting that these components represent new therapeutic targets in mitigating SCA1. Collectively, these data reveal new therapeutic entry points for SCA1 and provide a proof-of-principle for tackling other classes of intractable neurodegenerative diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020154/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020154/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Jeehye -- Al-Ramahi, Ismael -- Tan, Qiumin -- Mollema, Nissa -- Diaz-Garcia, Javier R -- Gallego-Flores, Tatiana -- Lu, Hsiang-Chih -- Lagalwar, Sarita -- Duvick, Lisa -- Kang, Hyojin -- Lee, Yoontae -- Jafar-Nejad, Paymaan -- Sayegh, Layal S -- Richman, Ronald -- Liu, Xiuyun -- Gao, Yan -- Shaw, Chad A -- Arthur, J Simon C -- Orr, Harry T -- Westbrook, Thomas F -- Botas, Juan -- Zoghbi, Huda Y -- HD024064/HD/NICHD NIH HHS/ -- MC_U127081014/Medical Research Council/United Kingdom -- NS42179/NS/NINDS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- R01 NS027699/NS/NINDS NIH HHS/ -- R01 NS042179/NS/NINDS NIH HHS/ -- T32 GM007526/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jun 20;498(7454):325-31. doi: 10.1038/nature12204. Epub 2013 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23719381" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Ataxin-1 ; Ataxins ; Cell Line, Tumor ; Disease Models, Animal ; Down-Regulation/drug effects ; Drosophila melanogaster/genetics/*metabolism ; Female ; Humans ; MAP Kinase Signaling System/drug effects ; Male ; Mice ; Mitogen-Activated Protein Kinases/*metabolism ; Molecular Sequence Data ; Molecular Targeted Therapy ; Nerve Tissue Proteins/chemistry/genetics/*metabolism/*toxicity ; Nuclear Proteins/chemistry/genetics/*metabolism/*toxicity ; Phosphorylation ; Protein Stability/drug effects ; Ribosomal Protein S6 Kinases, 90-kDa/deficiency/genetics/*metabolism ; Spinocerebellar Ataxias/*metabolism/*pathology ; Transgenes ; ras Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-01
    Description: It is unknown whether the human immune system frequently mounts a T cell response against mutations expressed by common epithelial cancers. Using a next-generation sequencing approach combined with high-throughput immunologic screening, we demonstrated that tumor-infiltrating lymphocytes (TILs) from 9 out of 10 patients with metastatic gastrointestinal cancers contained CD4(+) and/or CD8(+) T cells that recognized one to three neo-epitopes derived from somatic mutations expressed by the patient's own tumor. There were no immunogenic epitopes shared between these patients. However, we identified in one patient a human leukocyte antigen-C*08:02-restricted T cell receptor from CD8(+) TILs that targeted the KRAS(G12D) hotspot driver mutation found in many human cancers. Thus, a high frequency of patients with common gastrointestinal cancers harbor immunogenic mutations that can potentially be exploited for the development of highly personalized immunotherapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tran, Eric -- Ahmadzadeh, Mojgan -- Lu, Yong-Chen -- Gros, Alena -- Turcotte, Simon -- Robbins, Paul F -- Gartner, Jared J -- Zheng, Zhili -- Li, Yong F -- Ray, Satyajit -- Wunderlich, John R -- Somerville, Robert P -- Rosenberg, Steven A -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1387-90. doi: 10.1126/science.aad1253. Epub 2015 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. ; Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. sar@mail.nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516200" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; CD8-Positive T-Lymphocytes/immunology ; Cell Line, Tumor ; Female ; Gastrointestinal Neoplasms/*genetics/*immunology/therapy ; HLA-C Antigens/genetics/immunology ; Humans ; Immunodominant Epitopes/genetics/immunology ; Immunotherapy/methods ; Lymphocytes, Tumor-Infiltrating/immunology ; Male ; Middle Aged ; Mutation ; Precision Medicine/methods ; Proto-Oncogene Proteins/genetics/immunology ; Receptors, Antigen, T-Cell/immunology ; ras Proteins/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-07
    Description: More than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations and are often refractory to approved targeted therapies. We found that cultured human CRC cells harboring KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via the GLUT1 glucose transporter. Increased DHA uptake causes oxidative stress as intracellular DHA is reduced to vitamin C, depleting glutathione. Thus, reactive oxygen species accumulate and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Inhibition of GAPDH in highly glycolytic KRAS or BRAF mutant cells leads to an energetic crisis and cell death not seen in KRAS and BRAF wild-type cells. High-dose vitamin C impairs tumor growth in Apc/Kras(G12D) mutant mice. These results provide a mechanistic rationale for exploring the therapeutic use of vitamin C for CRCs with KRAS or BRAF mutations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778961/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778961/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yun, Jihye -- Mullarky, Edouard -- Lu, Changyuan -- Bosch, Kaitlyn N -- Kavalier, Adam -- Rivera, Keith -- Roper, Jatin -- Chio, Iok In Christine -- Giannopoulou, Eugenia G -- Rago, Carlo -- Muley, Ashlesha -- Asara, John M -- Paik, Jihye -- Elemento, Olivier -- Chen, Zhengming -- Pappin, Darryl J -- Dow, Lukas E -- Papadopoulos, Nickolas -- Gross, Steven S -- Cantley, Lewis C -- KL2 TR000458/TR/NCATS NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- P01 CA117969-09/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-07/CA/NCI NIH HHS/ -- S10 RR022615/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1391-6. doi: 10.1126/science.aaa5004. Epub 2015 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA. ; Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA. Biological and Biomedical Sciences Graduate Program, Harvard Medical School, Boston, MA 02115, USA. ; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. ; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. ; Molecular Oncology Research Institute and Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA. ; Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA. ; Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Biostatistics and Epidemiology, Weill Cornell Medical College, New York, NY 10065, USA. ; Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA. lcantley@med.cornell.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26541605" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein/genetics ; Animals ; Ascorbic Acid/administration & dosage/pharmacology/*therapeutic use ; Cell Line, Tumor ; Colorectal Neoplasms/*drug therapy/*genetics ; Dehydroascorbic Acid/metabolism ; Female ; Glucose Transporter Type 1/metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism ; Glycolysis/drug effects ; Humans ; Mice ; Mice, Mutant Strains ; Mice, Nude ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins B-raf/*genetics ; Proto-Oncogene Proteins p21(ras)/genetics ; Reactive Oxygen Species/metabolism ; Xenograft Model Antitumor Assays ; ras Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...