ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (4)
  • 2020-2022  (4)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2020-07-22
    Description: The physical mechanisms that remove energy from the Southern Ocean’s vigorous mesoscale eddy field are not well understood. One proposed mechanism is direct transfer of energy to the internal wave field in the ocean interior, via eddy-induced straining and shearing of pre-existing internal waves. The magnitude, vertical structure and temporal variability of the rate of energy transfer between eddies and internal waves is quantified from a 14-month deployment of a mooring cluster in the Scotia Sea. Velocity and buoyancy observations are decomposed into wave and eddy components, and the energy transfer is estimated using the Reynolds-averaged energy equation. We find that eddies gain energy from the internal wave field at a rate of –2.2±0.6mW m−2, integrated from the bottom to 566 m below the surface. This result can be decomposed into a positive (eddy to wave) component, equal to 0.2±0.1 mW m−2, driven by horizontal straining of internal waves, and a negative (wave to eddy) component, equal to –2.5±0.6 mW m−2, driven by vertical shearing of the wave spectrum. Temporal variability of the transfer rate is much greater than the mean value. Close to topography, large energy transfers are associated with low-frequency buoyancy fluxes, the underpinning physics of which do not conform to linear wave dynamics and are thereby in need of further research. Our work suggests that eddy-internal wave interactions may play a significant role in the energy balance of the Southern Ocean mesoscale eddy and internal wave fields.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-01
    Description: A 4-month glider mission was analyzed to assess turbulent dissipation in an anticyclonic eddy at the western boundary of the subtropical North Atlantic. The eddy (radius ≈ 60 km) had a core of low potential vorticity between 100 and 450 m, with maximum radial velocities of 0.5 m s−1 and Rossby number ≈ −0.1. Turbulent dissipation was inferred from vertical water velocities derived from the glider flight model. Dissipation was suppressed in the eddy core (ε ≈ 5 × 10−10 W kg−1) and enhanced below it (〉10−9 W kg−1). Elevated dissipation was coincident with quasiperiodic structures in the vertical velocity and pressure perturbations, suggesting internal waves as the drivers of dissipation. A heuristic ray-tracing approximation was used to investigate the wave–eddy interactions leading to turbulent dissipation. Ray-tracing simulations were consistent with two types of wave–eddy interactions that may induce dissipation: the trapping of near-inertial wave energy by the eddy’s relative vorticity, or the entry of an internal tide (generated at the nearby continental slope) to a critical layer in the eddy shear. The latter scenario suggests that the intense mesoscale field characterizing the western boundaries of ocean basins might act as a “leaky wall” controlling the propagation of internal tides into the basin’s interior.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-24
    Description: The finescale parameterization, formulated on the basis of a weak nonlinear wave–wave interaction theory, is widely used to estimate the turbulent dissipation rate, ε. However, this parameterization has previously been found to overestimate ε in the Antarctic Circumpolar Current (ACC) region. One possible reason for this overestimation is that vertical wavenumber spectra of internal wave energy are distorted from the canonical Garrett-Munk spectrum and have a spectral “hump” at low vertical wavenumbers. Such distorted vertical wavenumber spectra were also observed in other mesoscale eddy-rich regions. In this study, using eikonal simulations, in which internal wave energy cascades are evaluated in the frequency-wavenumber space, we examine how the distortion of vertical wavenumber spectra impacts on the accuracy of the finescale parameterization. It is shown that the finescale parameterization overestimates ε for distorted spectra with a low-vertical-wavenumber hump because it incorrectly takes into account the breaking of these low-vertical-wavenumber internal waves. This issue is exacerbated by estimating internal wave energy spectral levels from the low-wavenumber band rather than from the high-wavenumber band, which is often contaminated by noise in observations. Thus, in order to accurately estimate the distribution of ε in eddy-rich regions like the ACC, high-vertical-wavenumber spectral information free from noise contamination is indispensable.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-01
    Description: The evolution of upper-ocean potential vorticity (PV) over a full year in a typical mid-ocean area of the Northeast Atlantic is examined using submesoscale- and mesoscale-resolving hydrographic and velocity measurements from a mooring array. A PV budget framework is applied to quantitatively document the competing physical processes responsible for deepening and shoaling the mixed layer. The observations reveal a distinct seasonal cycle in upper-ocean PV, characterized by frequent occurrences of negative PV within deep (up to about 350 m) mixed layers in winter to mid spring, and positive PV beneath shallow (mostly less than 50 m) mixed layers during the remainder of the year. The cumulative positive and negative subinertial changes in the mixed layer depth, which are largely unaccounted for by advective contributions, exceed the deepest mixed layer by one order of magnitude, suggesting that mixed layer depth is shaped by the competing effects of de-stratifying and re-stratifying processes. Deep mixed layers are attributed to persistent atmospheric cooling in winter to mid spring, which triggers gravitational instability leading to mixed layer deepening. However, on shorter time scales of days, conditions favourable to symmetric instability often occur as winds intermittently align with transient frontal flows. The ensuing submesoscale frontal instabilities are found to fundamentally alter upper-ocean turbulent convection, and limit the deepening of the mixed layer in the winter-to-mid-spring period. These results emphasize the key role of submesoscale frontal instabilities in determining the seasonal evolution of the mixed layer in the open ocean.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...