ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (8)
  • 1995-1999  (23)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 25 (1995), S. 457-493 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract In the present review we analyze the available literature on the distribution of dust in the Universe, methods of its observation and determination of the chemical composition, and the roles for terrestrial prebiotic chemistry. The most plausible natural sources of dust on the Earth in the prebiotic era are sedimentation of interplanetary dust, meteoritic and cometary impacts, volcanic eruptions, and soil microparticulates; the interplanetary medium being among the most powerful supplier of the dust matter. Two fundamental roles of dust particles for the origins of life are considered: (1) catalytic formation of prebiotic compounds; and (2) delivery of organic matter to the Earth by space dust particles. Due to the fact that there is only approximate information on the chemical composition and properties of interstellar, circumstellar, and major part of interplanetary dust, even the simulating experiments are difficult to perform. Until these gaps are filled, it seems reasonable to focus efforts of the scientists dealing with dust-driven catalytic formation of prebiotically important compounds on the volcanic and meteoritic/cometary impact environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 26 (1996), S. 173-194 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Volcanic ash-gas clouds represent versatile local atmospheric environments appropriate for abiotic synthesis of rather complex organic molecules due to the simultaneous presence of various gaseous reagents, catalytically active inorganic particles, electric discharges, pressure and temperature gradients. They are relatively readily attainable for the scientists, contrary to objects or events of space origin (interstellar and planetary dust, meteoritic/cometary impacts,etc.), providing excellent opportunities forin situ studies and grounded simulating experiments. This paper reviews the available data on this environment, its most important chemical and physical parameters. Based on this analysis, it is suggested in brief experimental conditions for the simulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 26 (1996), S. 223-224 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 26 (1996), S. 336-337 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 26 (1996), S. 363-364 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 26 (1996), S. 534-535 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 28 (1998), S. 105-108 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 28 (1998), S. 167-193 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract To evaluate the types of amino acid thermal transformations caused by silicate materials, we studied the volatilization products of Aib, L-Ala, L-Val and L-Leu under temperatures of up to 270 °C in the presence of silica gel as a model catalyst and pulverized basaltic lava samples. It was found that silica gel catalyzes nearly quantitative condensation of amino acids, where piperazinediones are the major products, whereas lava samples have much lower catalytic efficiency. In addition bicyclic and tricyclic amidines and several products of their subsequent thermal decomposition have been identified using the coupled technique of GC-FTIR-MS and HPLC-PB-MS, with auxiliary computer simulation of IR spectra and NMR spectroscopy. The decomposition is due to dehydrogenation, elimination of the alkyl substituents and dehydration as well as cleavage of the bicyclic ring system. The imidazole ring appears to be more resistant to thermal decomposition as compared to the pyperazine moiety, giving rise to the formation of different substituted imidazolones. The amidines were found to hydrolyze under treatment with concentrated HCl, releasing the starting amino acids and thus behaving as amino acid anhydrides. The thermal transformations cause significant racemization of amino acid residues. Based on our observations, the formation of amidine-type products is suggested to be rather common in the high-temperature experiments on amino acid condensation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 28 (1998), S. 131-153 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract An accurate and precise knowledge of the amount of energy introduced into prebiotic discharge experiments is important to understand the relative roles of different energy sources in the synthesis of organic compounds in the primitive Earth's atmosphere and other planetary atmospheres. Two methods widely used to determine the power of spark discharges were evaluated, namely calorimetric and oscilloscopic, using a chemically inert gas. The power dissipated by the spark in argon at 500 Torr was determined to be 2.4 (+12%/_17%) J s_1 by calorimetry and 5.3 (± 15%) J s_1 by the oscilloscope. The difference between the two methods was attributed to (1) an incomplete conversion of the electric energy into heat, and (2) heat loss from the spark channel to the connecting cables through the electrodes. The latter contribution leads to an unwanted effect in the spark channel by lowering the spark product yields as the spark channel cools by mixing with surrounding air and by losing heat to the electrodes. Once the concentrations of the spark products have frozen at the freeze-out temperature, any additional loss of heat from the spark channel to the electrodes has no consequence in product yields. Therefore, neither methods accurately determines the net energy transferred to the system. With a lack of a quantitative knowledge of the amount of heat loss from the spark channel during the interval from ignition of the spark to when the freeze-out temperature is reached, it is recommended to derive the energy yields of the spark products from the mean value of the two methods with the uncertainty being their standard deviation. For the case of argon at 500 Torr, this would be 3.8 (±50%) J s_1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-0689
    Keywords: Alanine ; Amino acids ; Chirality ; Glycine ; Ionizing radiation ; Kinetics ; Primitive hydrosphere ; Racemization ; Radiolysis ; Radioracemization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Akaboshi et al. (1990) has found an unexpected protection of the achiral amino acid, glycine, towards ionizing radiation at the expense of the selective destruction of the chiral amino acids, alanine and aspartic acid. The present work examines the mechanism of this protection for the case of alanine. We have developed a computer model for the radiolysis of glycine, alanine and glycine-alanine mixtures in aqueous solution. It is established that this protection is due in part to the reaction of the α-radical of glycine with alanine to regenerate a more stable α-radical, according to the following reaction, $$ \cdot CH(NH_3^ + )CO_2^ - + CH_3 CH(NH_3^ + )CO_2^ - \to CH_2 (NH_3^ + )CO_2^ - + CH_3 \dot C(NH_3^ + )CO_2^ -$$ The rate constant of this reaction was estimated to be ≤104M-1s-1. The implications for this selective protection of glycine are considered for a hypothetical case in which there would be an enrichment of about 10% ofL-alanine in the primitive ocean and taking the glycine/alanine ratios obtained in CH4-and CO2- dominated atmospheres using electric discharge experiments. It is predicted that alanine would be rapidly destroyed and radioracemized in spite of the fact that the concentration of alanine is equal or significantly lower than that of glycine. Assuming that chiral amino acids were a prerequisite for the origin of life, it can be deduced that life could have appeared in a relatively short period of time unless there was a constant supply of optical amino acids from extraterrestrial sources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...