ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-06-09
    Description: There is a growing understanding that secondary organic aerosol (SOA) can form through reactions in atmospheric waters (i.e., clouds, fogs, and aerosol water). In clouds and wet aerosols, water-soluble organic products of gas-phase photochemistry dissolve into the aqueous phase where they can react further (e.g. with OH radicals) to form low volatility products that are largely retained in the particle phase. Organic acids, oligomers and other products form via radical- and non-radical reactions, including hemiacetal formation during droplet evaporation, acid/base catalyzation, and reaction of organics with other constituents (e.g. NH4+). This paper uses kinetic modeling, experiments conducted with aqueous carbonyl solutions in the presence and absence of OH radicals, electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, and the literature to describe aqueous chemistry at cloud- and aerosol-relevant concentrations and during droplet evaporation. At least for aqueous reactions of glyoxal with OH radicals, chemical modeling can reproduce experiments conducted at cloud-relevant concentrations without including radical–radical reactions, whereas radical–radical reactions become dramatically more important at higher concentrations. We demonstrate that reactions with OH radicals tend to be faster and form more SOA than "non-radical" reactions (e.g., acid catalyzation).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...