ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-17
    Description: Pluripotency is defined by the ability of a cell to differentiate to the derivatives of all the three embryonic germ layers: ectoderm, mesoderm and endoderm. Pluripotent cells can be captured via the archetypal derivation of embryonic stem cells or via somatic cell reprogramming. Somatic cells are induced to acquire a pluripotent stem cell (iPSC) state through the forced expression of key transcription factors, and in the mouse these cells can fulfil the strictest of all developmental assays for pluripotent cells by generating completely iPSC-derived embryos and mice. However, it is not known whether there are additional classes of pluripotent cells, or what the spectrum of reprogrammed phenotypes encompasses. Here we explore alternative outcomes of somatic reprogramming by fully characterizing reprogrammed cells independent of preconceived definitions of iPSC states. We demonstrate that by maintaining elevated reprogramming factor expression levels, mouse embryonic fibroblasts go through unique epigenetic modifications to arrive at a stable, Nanog-positive, alternative pluripotent state. In doing so, we prove that the pluripotent spectrum can encompass multiple, unique cell states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tonge, Peter D -- Corso, Andrew J -- Monetti, Claudio -- Hussein, Samer M I -- Puri, Mira C -- Michael, Iacovos P -- Li, Mira -- Lee, Dong-Sung -- Mar, Jessica C -- Cloonan, Nicole -- Wood, David L -- Gauthier, Maely E -- Korn, Othmar -- Clancy, Jennifer L -- Preiss, Thomas -- Grimmond, Sean M -- Shin, Jong-Yeon -- Seo, Jeong-Sun -- Wells, Christine A -- Rogers, Ian M -- Nagy, Andras -- MOP102575/Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Dec 11;516(7530):192-7. doi: 10.1038/nature14047.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea [3] Department of Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea. ; Department of Systems &Computational Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA. ; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia. ; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia. ; Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), Australian Capital Territory 2601, Australia. ; 1] Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), Australian Capital Territory 2601, Australia [2] Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea [3] Department of Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea [4] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Physiology, University of Toronto, Toronto, Ontario M5T 3H7, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5T 3H7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503232" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cellular Reprogramming/*genetics/*physiology ; Embryonic Stem Cells/cytology/metabolism ; *Epigenesis, Genetic ; Female ; Fibroblasts/classification/cytology/metabolism ; Histone Deacetylases/metabolism ; Induced Pluripotent Stem Cells/classification/*cytology/*metabolism ; Mice ; Mice, Nude ; Transcription Factors/genetics/metabolism ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...