ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-30
    Description: RNA ligases have essential roles in many cellular processes in eukaryotes, archaea and bacteria, including in RNA repair and stress-induced splicing of messenger RNA. In archaea and eukaryotes, RNA ligases also have a role in transfer RNA splicing to generate functional tRNAs required for protein synthesis. We recently identified the human tRNA splicing ligase, a multimeric protein complex with RTCB (also known as HSPC117, C22orf28, FAAP and D10Wsu52e) as the essential subunit. The functions of the additional complex components ASW (also known as C2orf49), CGI-99 (also known as C14orf166), FAM98B and the DEAD-box helicase DDX1 in the context of RNA ligation have remained unclear. Taking advantage of clusters of eukaryotic orthologous groups, here we find that archease (ARCH; also known as ZBTB8OS), a protein of unknown function, is required for full activity of the human tRNA ligase complex and, in cooperation with DDX1, facilitates the formation of an RTCB-guanylate intermediate central to mammalian RNA ligation. Our findings define a role for DDX1 in the context of the human tRNA ligase complex and suggest that the widespread co-occurrence of archease and RtcB proteins implies evolutionary conservation of their functional interplay.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417724/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417724/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Popow, Johannes -- Jurkin, Jennifer -- Schleiffer, Alexander -- Martinez, Javier -- P 24687/Austrian Science Fund FWF/Austria -- England -- Nature. 2014 Jul 3;511(7507):104-7. doi: 10.1038/nature13284. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria [2] European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany. ; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria. ; IMP/IMBA Bioinformatics Core Facility, Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870230" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/*metabolism ; Catalytic Domain ; Cell Survival ; Conserved Sequence ; DEAD-box RNA Helicases/*metabolism ; Evolution, Molecular ; Humans ; Multienzyme Complexes/chemistry/isolation & purification/*metabolism ; Proteins ; RNA Ligase (ATP)/*chemistry/isolation & purification/*metabolism ; *RNA Splicing ; RNA, Transfer/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...