ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-23
    Description: The dynamics of adaptation determine which mutations fix in a population, and hence how reproducible evolution will be. This is central to understanding the spectra of mutations recovered in the evolution of antibiotic resistance, the response of pathogens to immune selection, and the dynamics of cancer progression. In laboratory evolution experiments, demonstrably beneficial mutations are found repeatedly, but are often accompanied by other mutations with no obvious benefit. Here we use whole-genome whole-population sequencing to examine the dynamics of genome sequence evolution at high temporal resolution in 40 replicate Saccharomyces cerevisiae populations growing in rich medium for 1,000 generations. We find pervasive genetic hitchhiking: multiple mutations arise and move synchronously through the population as mutational 'cohorts'. Multiple clonal cohorts are often present simultaneously, competing with each other in the same population. Our results show that patterns of sequence evolution are driven by a balance between these chance effects of hitchhiking and interference, which increase stochastic variation in evolutionary outcomes, and the deterministic action of selection on individual mutations, which favours parallel evolutionary solutions in replicate populations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758440/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758440/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lang, Gregory I -- Rice, Daniel P -- Hickman, Mark J -- Sodergren, Erica -- Weinstock, George M -- Botstein, David -- Desai, Michael M -- GM046406/GM/NIGMS NIH HHS/ -- GM071508/GM/NIGMS NIH HHS/ -- P50 GM071508/GM/NIGMS NIH HHS/ -- R01 GM046406/GM/NIGMS NIH HHS/ -- R37 GM046406/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Aug 29;500(7464):571-4. doi: 10.1038/nature12344. Epub 2013 Jul 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA. glang@lehigh.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23873039" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics ; Cell Nucleus/genetics ; Clone Cells/*cytology/metabolism ; *Evolution, Molecular ; Genes, Fungal/genetics ; Mutation/genetics ; Saccharomyces cerevisiae/classification/cytology/*genetics/*growth & development ; Stochastic Processes ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...