ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-05-03
    Description: The endoplasmic reticulum (ER) is the main site of protein and lipid synthesis, membrane biogenesis, xenobiotic detoxification and cellular calcium storage, and perturbation of ER homeostasis leads to stress and the activation of the unfolded protein response. Chronic activation of ER stress has been shown to have an important role in the development of insulin resistance and diabetes in obesity. However, the mechanisms that lead to chronic ER stress in a metabolic context in general, and in obesity in particular, are not understood. Here we comparatively examined the proteomic and lipidomic landscape of hepatic ER purified from lean and obese mice to explore the mechanisms of chronic ER stress in obesity. We found suppression of protein but stimulation of lipid synthesis in the obese ER without significant alterations in chaperone content. Alterations in ER fatty acid and lipid composition result in the inhibition of sarco/endoplasmic reticulum calcium ATPase (SERCA) activity and ER stress. Correcting the obesity-induced alteration of ER phospholipid composition or hepatic Serca overexpression in vivo both reduced chronic ER stress and improved glucose homeostasis. Hence, we established that abnormal lipid and calcium metabolism are important contributors to hepatic ER stress in obesity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Suneng -- Yang, Ling -- Li, Ping -- Hofmann, Oliver -- Dicker, Lee -- Hide, Winston -- Lin, Xihong -- Watkins, Steven M -- Ivanov, Alexander R -- Hotamisligil, Gokhan S -- 1RC4-DK090942/DK/NIDDK NIH HHS/ -- DK52539/DK/NIDDK NIH HHS/ -- R01 DK052539/DK/NIDDK NIH HHS/ -- R01 DK052539-09/DK/NIDDK NIH HHS/ -- RC4 DK090942/DK/NIDDK NIH HHS/ -- RC4 DK090942-01/DK/NIDDK NIH HHS/ -- T32ES007155/ES/NIEHS NIH HHS/ -- England -- Nature. 2011 May 26;473(7348):528-31. doi: 10.1038/nature09968. Epub 2011 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21532591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Endoplasmic Reticulum/*metabolism/pathology ; Fatty Acids/metabolism ; Glucose/metabolism ; *Homeostasis ; Leptin/deficiency ; *Lipid Metabolism ; Liver/enzymology/metabolism/*pathology ; Male ; Mice ; Mice, Inbred C57BL ; Obesity/enzymology/*metabolism/pathology/physiopathology ; Phosphatidylcholines/metabolism ; Phosphatidylethanolamine N-Methyltransferase/biosynthesis/genetics ; Phosphatidylethanolamines/metabolism ; Protein Biosynthesis ; Proteomics ; Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & ; inhibitors/metabolism ; *Stress, Physiological ; Thinness/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...