All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2008-07-03
    Description: Reprogramming of somatic cells is a valuable tool to understand the mechanisms of regaining pluripotency and further opens up the possibility of generating patient-specific pluripotent stem cells. Reprogramming of mouse and human somatic cells into pluripotent stem cells, designated as induced pluripotent stem (iPS) cells, has been possible with the expression of the transcription factor quartet Oct4 (also known as Pou5f1), Sox2, c-Myc and Klf4 (refs 1-11). Considering that ectopic expression of c-Myc causes tumorigenicity in offspring and that retroviruses themselves can cause insertional mutagenesis, the generation of iPS cells with a minimal number of factors may hasten the clinical application of this approach. Here we show that adult mouse neural stem cells express higher endogenous levels of Sox2 and c-Myc than embryonic stem cells, and that exogenous Oct4 together with either Klf4 or c-Myc is sufficient to generate iPS cells from neural stem cells. These two-factor iPS cells are similar to embryonic stem cells at the molecular level, contribute to development of the germ line, and form chimaeras. We propose that, in inducing pluripotency, the number of reprogramming factors can be reduced when using somatic cells that endogenously express appropriate levels of complementing factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jeong Beom -- Zaehres, Holm -- Wu, Guangming -- Gentile, Luca -- Ko, Kinarm -- Sebastiano, Vittorio -- Arauzo-Bravo, Marcos J -- Ruau, David -- Han, Dong Wook -- Zenke, Martin -- Scholer, Hans R -- England -- Nature. 2008 Jul 31;454(7204):646-50. doi: 10.1038/nature07061. Epub 2008 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Rontgenstrasse 20, 48149 Munster, NRW, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*cytology/metabolism ; Animals ; Cell Differentiation/genetics ; Cells, Cultured ; *Cellular Reprogramming ; Chimera ; DNA-Binding Proteins/genetics/metabolism ; Female ; Gene Expression Profiling ; Genes, myc/genetics ; HMGB Proteins/genetics/metabolism ; Homeodomain Proteins/genetics ; Kruppel-Like Transcription Factors/genetics/metabolism ; Male ; Mice ; Mice, Nude ; Mice, Transgenic ; Neurons/*cytology ; Octamer Transcription Factor-3/genetics/metabolism ; Pluripotent Stem Cells/*cytology/*metabolism ; Proteins/genetics ; Proto-Oncogene Proteins c-myc/metabolism ; RNA, Untranslated ; SOXB1 Transcription Factors ; Transcription Factors/genetics/metabolism ; Transduction, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...