All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2018-01-06
    Description: Sensors, Vol. 18, Pages 138: Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection Sensors doi: 10.3390/s18010138 Authors: Satoshi Maruyama Takeshi Hizawa Kazuhiro Takahashi Kazuaki Sawada We developed a Fabry–Perot interferometer sensor with a metal-oxide-semiconductor field-effect transistor (MOSFET) circuit for chemical sensing. The novel signal transducing technique was performed in three steps: mechanical deflection, transmittance change, and photocurrent change. A small readout photocurrent was processed by an integrated source follower circuit. The movable film of the sensor was a 350-nm-thick polychloro-para-xylylene membrane with a diameter of 100 µm and an air gap of 300 nm. The linearity of the integrated source follower circuit was obtained. We demonstrated a gas response using 80-ppm ethanol detected by small membrane deformation of 50 nm, which resulted in an output-voltage change with the proposed high-efficiency transduction.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...