ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-11-29
    Description: Wind is an important regulator of coastal erosion and accretion processes that have significant ecological and engineering implications. Nevertheless, previous studies have mainly focused on storm−generated changes in the bed level. This paper aims to improve the understanding of wind−induced erosion–accretion cycles on intertidal flats under normal (non−stormy) weather conditions using data that relates to the wave climate, near−bed 3D flow velocity, suspended sediment concentration, and bed−level changes on a mudflat at the Yangtze Delta front. The following parameters were calculated at 10−minute intervals over 10 days: the wind wave orbital velocity (Û δ ), bed shear stress from combined current–wave action, erosion flux, deposition flux, and predicted bed−level change. The time series of measured and predicted bed−level changes both show tidal cycles and a 10−day cycle. We attribute the tidal cycles of bed−level changes to tidal dynamics, but we attribute the 10−day cycle of bed−level changes to the interaction between wind speed/direction and neap−spring cyclicity. We conclude that winds can significantly affect bed−level changes in mudflats even during non−stormy weather and under macro−mesotidal conditions and that the bed−level changes can be predicted well using current–wave–sediment combined models. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...