All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2016-11-29
    Description: We report a simple and efficient electrical sensing scheme that can be used to overcome the “diffusion limit” of affinity-based biosensors by incorporating the structural advantage of a concentric electrode biosensor platform and the microstirring effect of AC electrothermal flow (ACEF). To prove the effect of ACEF on the biosensor performance, we performed both simulations and experiments for the detection of cardiac troponin-I, which is a biomarker for acute myocardial infarction. The finite element simulation results indicate that AC bias to the electrode (which has a concentric structure in our device) can induce fast convection flow, which facilitates the transport of the target molecules to the binding region located between the two electrodes. In our device, the channel region made of a carbon nanotube network decorated with gold nanoparticles, which act as the attaching sites of the probe molecules, is used as a highly sensitive electrical channel. We find that the electrical sensing method exhibited extremely fast sensing speeds compared with those under no bias (diffusion-limited) conditions.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...