ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2014-06-19
    Description: Flue gases from a power plant based on waste combustion were tested as a carbon dioxide (CO2) source for growing Chlamydomonas reinhardtii. To achieve recognition as an environmentally friendly hydrogen production method, waste gases should be used to grow this hydrogen-producing microalgae. The algae were grown in undiluted flue gas containing 11.4±0.2% CO2 by volume, in diluted flue gas containing 6.7±0.1% or 2.5±0.0% CO2, and in pure liquid CO2 at a concentration of 2.7±0.2%. The NOx concentration was 45±16 mg m-3, the SO2 concentration was 36±19 mg m-3, the HCl concentration 4.1±1.0 mg m-3 and the O2 concentration 7.9±0.2% in the undiluted flue gas. Undiluted flue gas reduced the dry weight production by around 20-25% when grown at a photon flux density (PFD) of 300 μmol m-2 s-1 artificial light and at 24 or 33°C, compared with the other treatments. A less negative effect was found at the highest flue gas concentration when the algae were grown at 75 μmol m-2 s-1 PFD. Growing the algae outdoors at a day length of 12.5 h and a temperature of around 24°C, the dry weight production was higher (about 15%) in the 2.6% CO2 flue gas treatment compared with all other treatments. Reducing the light level by 30% through shading did not affect the dry weight production. Calculated on aerial basis the productivity reached approximately 70 g m-2 day-1 in the 300 μmol m-2 s-1 PFD treatment (corresponding to 25 mol m-2 day-1) and approximately 17 g m-2 day-1 in the 75μmol m-2 s-1 PFD treatment (corresponding to 6.5 mol m-2 day-1). The outdoor production reached around 14 g m-2 day-1. It was concluded that the negative effect of the undiluted flue gas was attributable to the high CO2 concentration and not to the other pollutants.
    Electronic ISSN: 2191-0855
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...