ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-02
    Description: Nature Physics 10, 294 (2014). doi:10.1038/nphys2898 Authors: Y. Liu, Y. Y. Li, S. Rajput, D. Gilks, L. Lari, P. L. Galindo, M. Weinert, V. K. Lazarov & L. Li Three-dimensional Bi-chalcogenide topological insulators exhibit surface states populated by massless Dirac fermions that are topologically protected from disorder scattering. Here, we demonstrate that these states can be enhanced or destroyed by strain in the vicinity of grain boundaries on the surface of epitaxial Bi2Se3(0001) thin films. Using scanning tunnelling and transmission electron microscopy, we show that the low-angle tilt grain boundaries in Bi2Se3(0001) films consist of arrays of alternating edge dislocation pairs. Along the boundary, these dislocations introduce periodic in-plane compressive and tensile strains. From tunnelling spectroscopy experiments and first-principles calculations, we find that whereas the energy of the Dirac state shifts in regions under tensile strain, a gap opens in regions under compressive strain, indicative of the destruction of the Dirac states at the surface. These results demonstrate that Dirac states can be tuned by strain at the atomic scale.
    Print ISSN: 1745-2473
    Electronic ISSN: 1745-2481
    Topics: Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...