ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-02-01
    Description: A magnetic loading technique was used to study the strength of polycrystalline tantalum ramp compressed to peak stresses between 60 and 250 GPa. Velocimetry was used to monitor the planar ramp compression and release of various tantalum samples. A wave profile analysis was then employed to determine the pressure-dependence of the average shear stress upon unloading at strain rates on the order of 10 5  s −1 . Experimental uncertainties were quantified using a Monte Carlo approach, where values of 5% in the estimated pressure and 9–17% in the shear stress were calculated. The measured deviatoric response was found to be in good agreement with existing lower pressure strength data as well as several strength models. Significant deviations between the experiments and models, however, were observed at higher pressures where shear stresses of up to 5 GPa were measured. Additionally, these data suggest a significant effect of the initial material processing on the high pressure strength. Heavily worked or sputtered samples were found to support up to a 30% higher shear stress upon release than an annealed material.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...