ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-30
    Description: Core Binding Factor (CBF) is a heterodimeric transcription factor containing one of three DNA-binding proteins of the Runt-related transcription factor family (RUNX1-3) and the non-DNA-binding protein, CBFβ. RUNX1 and CBFβ are the most common targets of chromosomal rearrangements in leukemia. CBF has been implicated in other cancer types; for example RUNX1 and RUNX2 are implicated in cancers of epithelial origin, including prostate, breast and ovarian cancers. In these tumors, CBF is involved in maintaining the malignant phenotype and, when highly over-expressed, contributes to metastatic growth in bone. Herein, lentiviral delivery of CBFβ-specific shRNAs was used to achieve a 95% reduction of CBFβ in an ovarian cancer cell line. This drastic reduction in CBFβ expression resulted in growth inhibition that was not associated with a cell cycle block or an increase in apoptosis. However, CBFβ silencing resulted in increased autophagy and production of reactive oxygen species (ROS). Since sphingolipid and ceramide metabolism regulates non-apoptotic cell death, autophagy and ROS production, Fumonsin B1 (FB1), an inhibitor of ceramide synthase, was used to alter ceramide production in the CBFβ–silenced cells. FB1 treatment inhibited the CBFβ-dependent increase in autophagy and provided a modest increase in cell survival. To document alterations to sphingolipids in the CBFβ-silenced cells, ceramide and lactosylceramide levels were directly examined by mass spectrometry. Substantial increases in ceramide species and decreases in lactosylceramides were identified. Altogether, this report provides evidence that CBF transcriptional pathways control cellular survival, at least in part, through sphingolipid metabolism. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...