ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-06
    Description: Soil organic carbon (SOC) is an important component of the global carbon cycle, yet is rarely quantified adequately in terms of its spatial variability resulting from losses of SOC due to erosion by water. Furthermore, in drylands, little is known about the effect of widespread vegetation change on changes in SOC stores and the potential for water erosion to redistribute SOC around the landscape especially during high-magnitude runoff events (flash floods). This study assesses the change in SOC stores across a shrub-encroachment gradient in the Chihuahuan Desert of the south west USA. A robust estimate of SOC storage in surface soils is presented, indicating that more SOC is stored beneath vegetation than in bare soil areas. In addition, the change in SOC storage over a shrub-encroachment gradient is shown to be non-linear and highly variable within each vegetation type. Over the gradient of vegetation change, heterogeneity of SOC increases and newer carbon from C 3 plants becomes dominant. This increase in heterogeneity of SOC is related to an increase in water erosion and SOC loss from intershrub areas, which is self-reinforcing. Shrub-dominated drylands lose more than three times as much SOC as their grass counterparts. The implications of this study are twofold: 1. Quantifying the effects of vegetation change on carbon loss via water erosion and the highly variable effects of land degradation on soil carbon stocks is critical. 2. If landscape scale understanding of carbon loss by water erosion in drylands is required, studies must characterise heterogeneity of ecosystem structure and its effects on ecosystem function across ecotones subject to vegetation change. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...