ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: The spring Sudan low and its Red Sea Trough (RST) were detected objectively using sea level pressure (SLP) data obtained from an NCEP/NCAR reanalysis dataset spanning the period from 1955 to 2014. The climatology of the detected lows suggested that the Sudan low was active for approximately 69.5% of the spring and that approximately 56.2% of this time the Sudan low developed into the RST. Furthermore, three main genesis regions of the RST, which generated 95.25% of the RST, were identified over Sudan, South Sudan and the Red Sea, approximately 61.76% of which was over South Sudan. Additionally, three main outermost areas of the RST, which received 94.1% of the RST, were specified to the west, east and north of the Red Sea, approximately 54.88% of which was in the eastern region. Synoptically, the orientations of the detected RST around the Red Sea are strongly influenced by the Siberian and Azores high systems. The RST is directed along the western side of the Red Sea if the Siberian high extends westward and the Azores high shrinks westward, whereas the RST is oriented to the east if the Siberian high shrinks eastward and the Azores high extends eastward. The RST extends directly northward if the Siberian and Azores high systems withdraw eastward and westward, respectively. These results also demonstrate that the core position and strength of the upper maximum winds play an important role in the generation of RST. The selected case studies have confirmed the synoptic climate results and indicate that the Sudan low will not develop into RST when the northern region has been affected by a high‐pressure system and the core of the upper maximum wind is located over the northern Arabian Peninsula. This article is protected by copyright. All rights reserved.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...