ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The Office of Chief Technologist, NASA identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: Mass to Surface, Surface Access, Precision Landing, Surface Hazard Detection and Avoidance, Safety and Mission Assurance, and Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems are manufactured using techniques that require filling of each (38 cell) by hand, and in a limited amount of time all of the cells must be filled and the heatshield must be cured. The tile systems such as PICA pose a different challenge as the low strain-to-failure and manufacturing size limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS. A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials. The high strain-to-failure nature of the conformal ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. By reducing the overall part count, the cost of installation (based on cost comparisons between blanket and tile materials on shuttle) should be significantly reduced. The conformal ablator design will include a simplified design of seams between gore panels, which should eliminate the need for gap filler design, and should accommodate a wider range of allowable carrier structure imperfections when compared to a rigid material such as PICA.The Conformal TPS development project leverages the past investments made by earlier projects with a goal to develop and deliver a TRL 5 conformal TPS capable of 250 Wcm2 for missions such as MSL or COTS missions. The capabilities goal for the conformal TPS is similar to an MSL design reference mission (250 Wcm2) with matching pressures and shear environments. Both conformal and flexible carbon-felt based materials were successfully tested in stagnation aerothermal environments above 500 Wcm2 under earlier programs. Results on a myriad of materials developed during FY11 were used to determine which materials to start with in FY12. In FY12, the conformal TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a Conformal Ablative TPS. In FY13, development and refining metrics for mission utilization of conformal ablator technology along with assessment for potential mission stakeholders will be carried out.
    Keywords: Composite Materials
    Type: ARC-E-DAA-TN9855 , International Planetary Probe Workshop; Jun 17, 2013 - Jun 21, 2013; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...