ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: The mechanical and optical properties of the thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Astronaut observations and photographs from the Second Servicing Mission (SM2) revealed large cracks in the metallized Teflon fluorinated ethylene propylene (FEP), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. Also, the absorptance of the bonded metallized Teflon FEP radiator surfaces of the telescope has increased over time. A Failure Review Board was established to determine the damage mechanism and to identify a replacement material. Samples of the top layer of the MLI and radiator material were retrieved during SM2, and a thorough investigation into the degradation followed in order to determine the primary cause of the damage. Mapping of the cracks on HST and the ground testing showed that thermal cycling with deep-layer damage from electron and proton radiation are necessary to cause the observed embrittlement. Further, strong evidence was found indicating that chain scission (reduced molecular weight) is the dominant form of damage to the metallized Teflon FEP. Given the damage to the outer layer of the multi-layer insulation (MLI) that was apparent during the second servicing mission (SM2), the decision was made to replace the outer layer during subsequent servicing missions. The replacement material had to meet the stringent thermal requirements of the spacecraft and maintain structural integrity for at least ten years. Ten candidate materials were exposed to simulated orbital environments and a replacement material was selected. This presentation will summarize the FRB results, in particular, the analysis of the retrieved specimens, the results of the simulated environmental exposures, and the selection of the replacement material. The NASA Space Environments and Effects community needs to hear these results because they reveal that Teflon (FEP) films should not be used in LEO as routinely as they are today.
    Keywords: Astronomy
    Type: 1998 SEE Flight Experiments; Jun 23, 1998 - Jun 25, 1998; Greenbelt, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...