ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-04-02
    Description: ALH 84001, a ferroan martian orthopyroxenite, originally consisted of three petrographically defined components: a cumulus assemblage of orthopyroxene + chromite, a trapped melt assemblage of orthopyroxene(?) + chromite + maskelynite + apatite + augite +/- pyrite, and a metasomatic assemblage of carbonate +/- pyrite. We present the results of Instrumental Neutron Activation Analysis (INAA) study of five bulk samples of ALH 84001, combined with Scanning Ion Mass Spectrometer (SIMS) data on the orthopyroxene, in order to attempt to set limits on the geochemical characteristics of the latter two components, and therefore on the petrogenesis of ALH 84001. The INAA data support the petrographic observations, suggesting that there are at least three components in ALH 84001. We will assume that each of the three geochemically required components can be equated with one of the petrographically observed components. Both trapped melt and metasomatic components in ALH 84001 have higher Na than orthopyroxene based on compositions of maskelynite, apatite, and carbonate. For the metasomatic component, we will assume its Na content is that of carbonate, while for a trapped melt component, we will use a typical Na content inferred for martian meteorite parent melts, approximately 1 wt% Na2O. Under these assumptions, we can set limits on the Light Rare Earth Elements/Heavy Rare Earth Elements (LREE/HREE) ratios of the components, and use this information to compare the petrogenesis of ALH 84001 with other martian meteorites. The above calculations assume that the bulk samples are representative of different portions of ALH 84001. We will also evaluate the possible heterogeneous distribution of mineral phases in the bulk samples as the cause of compositional heterogeneity in our samples.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Meteoritics (ISSN 0026-1114); 29; 4; p. 504
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...