ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: A semi-span testing technique has been proposed for the NASA Langley Research Center's National Transonic Facility (NTF). Semi-span testing has several advantages including (1) larger model size, giving increased Reynolds number capability; (2) improved model fidelity, allowing ease of flap and slat positioning which ultimately improves data quality; and (3) reduced construction costs compared with a full-span model. In addition, the increased model size inherently allows for increased model strength, reducing aeroelastic effects at the high dynamic pressure levels necessary to simulate flight Reynolds numbers. The Energy Efficient Transport (EET) full-span model has been modified to become the EET semi-span model. The full-span EET model was tested extensively at both NASA LRC and NASA Ames Research Center. The available full-span data will be useful in validating the semi-span test strategy in the NTF. In spite of the advantages discussed above, the use of a semi-span model does introduce additional challenges which must be addressed in the testing procedure. To minimize the influence of the sidewall boundary layer on the flow over the semi-span model, the model must be off-set from the sidewall. The objective is to remove the semi-span model from the sidewall boundary layer by use of a stand-off geometry. When this is done however, the symmetry along the centerline of the full-span model is lost when the semi-span model is mounted on the wind tunnel sidewall. In addition, the large semi-span model will impose a significant pressure loading on the sidewall boundary layer, which may cause separation. Even under flow conditions where the sidewall boundary layer remains attached, the sidewall boundary layer may adversely effect the flow over the semi-span model. Also, the increased model size and sidewall mounting requires a modified wall correction strategy. With these issues in mind, the semi-span model has been well instrumented with surface pressure taps to obtain data on the expected complex flow field in the near wall region. This status report summarizes the progress to date on developing the semi-span geometry definition suitable for generating structured grids for the computational research. In addition, the progress on evaluating three state-of-the-art Navier-Stokes codes is presented.
    Keywords: AERODYNAMICS
    Type: NASA-CR-194479 , NAS 1.26:194479
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...