ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: It has been known for over a decade that certain high-altitude regions on Venus exhibit bizarre radar-scattering and radiothermal-emission behavior. For example, observed values for normal-incidence power reflection coefficients in these areas can exceed 0.5; enhanced back scatter in some mountainous areas in the Magellan SAR images creates a bright surface with the appearance of snow; and reduced thermal emission in the anomalous areas makes the surface there appear hundreds of degrees cooler than the corresponding physical surface temperatures. The inferred radio emissivity in several of these regions falls to 0.3 for horizontal linear polarization at viewing angles in the range 20 deg - 40 deg. Several explanations have been offered for these linked phenomena. One involves single-surface reflection from a sharp discontinuity separating two media that have extremely disparate values of electromagnetic propagation. The mismatch may occur in either or both the real (associated with propagation velocity) or imaginary (associated with absorption) components of the relevant indices of refraction, and the discontinuity must take place over a distance appreciably shorter than a wavelength. An example of such an interaction of Earth would occur at the surface of a body of water. At radio wavelengths, water has an index of refraction of 9 (dielectric permittivity of about 80), and an associated loss factor that varies strongly with the amount of dissolved salts, but is generally significant. Its single-surface radar reflectivity at normal incidence is about 0.65, and the corresponding emissivity (viewed at the same angle) is therefore 0.35. Both these values are similar to the extremes found on Venus, but in the absence of liquid water, the process on Venus requires a different explanation. Two of the present authors (Pettengill and Ford) have suggested that scattering from a single surface possessing a very high effective dielectric permittivity could explain many of the unusual characteristics displayed by the Venus surface. A second explantion relates to the volume scattering that results from successive interactions with one or more interfaces interior to the planetary surface. If the near-surface material has a moderately low index of refraction (to ensure that a substantial fraction of the radiation incident from outside is not reflected, but rather penetrates into the surface), and a very low internal propagation loss, successive internal reflections can eventually redirect much of the energy back through the surface toward the viewer. The necessary conditions for this process to be effective are a low internal propagation loss coupled with efficient internal reflection. At sufficiently low temperatures, fractured water ice displays both the necessary low loss and near-total internal reflection. The possibility that this mechanism might be acting on Venus has recently been put forward.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Papers Presented to the International Colloquium on Venus; p 88-89
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...