ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Experimental studies are conducted to examine the utilization of transpiration cooling to reduce the peak-heating loads in areas of shock/shock interaction. Smooth and transpiration-cooled nosetip models, 12 inches in diameter, were employed in these studies, which focused on defining the pressure distributions and heat transfer in type III and IV interaction areas. Transpiration cooling was determined to significantly increase the size of the shock layer and to move the peak-heating point around the body. A transpiration-cooling rate of more than 30 percent of the freestream maximum flux did not lower the peak-heating level more than 10 percent, but the integrated heating loads were reduced.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-1765
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...