ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: Particles in the mass range from 10 to the minus 7th power to 10 to the minus 3rd power grams contribute 80 percent of the total mass influx of meteoritic material in the 10 to the minus 13th power to 10 to the 6th power gram mass range at Earth (Hughes, 1978). On Earth atmospheric entry, all but the smallest particles in the 10 to the minus 7th power to 10 to the minus 3rd power gram mass range, about 60 to 1200 micrometers in diameter, are heated sufficiently to melt and vaporize. Mars, because of its lower escape velocity and larger atmospheric scale height, is a much more favorable site for unmelted survival of micrometeorites on atmospheric deceleration. Researchers calculate that a significant fraction of particles throughout the 60 to 1200 micrometer diameter range will survive atmospheric entry unmelted. Thus returned Mars soils may offer a resource for sampling micrometeorites in a size range uncollectable in unaltered form at Earth. The addition of meteoritic material to the Mars soils should perturb their chemical composition, as has been detected using the soils on the Moon (Anders, et al., 1973). Using measured mass influx at Earth and estimates of the Mars/Earth flux ratio, researchers estimate a mass influx at Mars of between 2,700 and 202,000 metric tons per year.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Lyndon B.; NASA, Lyndon B. John
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...