ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Solutions are presented for the aerothermal heating environments and the material thermal response for the forebody heatshield on the candidate 242 kg Galileo probe entering the modeled nominal and cold-dense Jovian atmospheres. In the flowfield analysis, a finite difference procedure was employed to obtain benchmark predictions of pressure, radiation and convective heating rates (both laminar and turbulent) and the corresponding wall blowing obtained under the steady state approximation. The fluxes over the probe flank were found to be in a range where spallation is an important mass loss mechanism. The predicted heating rates were also used as boundary conditions for a charring materials ablation which was used to predict thermochemical based surface recession, mass loss and bondline temperatures. The contingency factor of 30% currently employed by NASA was found to be insufficient for entry into the cold-dense atmosphere.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: ASME PAPER 80-ENAS-24 , Intersociety Environmental Systems Conference; Jul 14, 1980 - Jul 17, 1980; San Diego, CA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...