ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-10
    Description: An intensive field campaign involving measurement of various aerosol physical, chemical, and radiative properties was conducted at Sde Boker in the Negev Desert of Israel, from 18 February to 15 March 1997. Nephelometer measurements gave average background scattering coefficient values of about 25 M/m at 550 nm wavelength, but strong dust events caused the value of this parameter to rise up to about 800 M/m Backscattering fractions did not depend on aerosol loading, and generally fell in the range of 0.1 to 0.25, comparable to values reported for marine and Arctic environments. Chemical analysis of the aerosol revealed that, in the coarse size range (2 - 10 micrometer equivalent aerodynamic diameter (EAD)), calcium (Ca) was by far the most abundant element followed by silicon (Si), both of which are indicators for mineral dust. In the fine size fraction (〈 2 micrometers EAD), sulfur (S) generally was the dominant element, except during high dust episodes when Ca and Si were again the most abundant. Furthermore, fine black carbon (BC) correlates with S, suggesting that they may have originated from the same sources or source regions. An indication of the short-term effect of aerosol loading on radiative forcing was provided by measurements of global and diffuse solar radiation, which showed that during high turbidity periods (strong dust events) almost all of the solar radiation reaching the area is scattered or absorbed.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...