ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 7066-7075 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The statistical theory proposed by Rosenkranz to calculate the continuous absorption by water molecules in the high-frequency (infrared) wing of the pure rotational band is reviewed and extended. In the review there is a discussion, in particular, of the approximations that are made, including those that are necessary and which limit the applicability of the theory to other spectral regions, and those that are made for calculational convenience. Then, several extensions to the theory are discussed, including increasing the number of rotational states used to calculate the band-average relaxation parameter, modifying the definition of this parameter to account for near-wing effects, and eliminating the boxcar approximation. This last modification, effected by using asymmetric-top functions instead of symmetric-top functions to calculate matrix elements of the density operator and to diagonalize the dipole–dipole interaction, results in significant enhancement of the relaxation parameter. This improvement, in turn, allows one to eliminate an inconsistency in the original formulation of Rosenkranz while obtaining substantially the same final results. The implications of the present results for the calculation of the absorption in the high-frequency wing of the ν2 fundamental vibration-rotational band of H2O are discussed briefly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...