ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 961-971 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The fundamental isotropic Raman Q branch of oxygen at pressures up to 2 atm and for temperatures between 295 and 1350 K has been recorded using stimulated Raman gain spectroscopy (SRGS) for collisions with oxygen and nitrogen. The line broadening and line shifting coefficients have been determined for several rotational quantum numbers (up to N=55 at 1350 K). The temperature dependence of these coefficients has also been studied for most of the rotational lines. The line parameters (widths and shifts) have been then calculated a priori through a semiclassical model. A good agreement between experimental and theoretical data has been observed. Another theoretical approach based on fitting and scaling law has been used to calculate the line broadening coefficients. It is shown that a modified exponential energy gap model (MEG) and an energy corrected sudden law (ECS) for the state-to-state rotationally inelastic rates, account for the rotational and temperature dependences of the observed linewidths. With regard to the energy corrected sudden law, the best results are obtained when the basis rate constants are modeled with a hybrid exponential-power fitting law (EP). The line broadening and shifting coefficients of the oxygen–nitrogen mixture are very close to those found for pure oxygen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...