ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 724-728 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In order to study the formation of thermal vacancies in the Ti–Al alloy system, high-temperature positron lifetime measurements together with a modeling of defect formation in the framework of nearest-neighbor pair bonds were performed for α2Ti3Al and compared to recent results on γTiAl [U. Brossmann, R. Würschum, K. Badura, and H.-E. Schaefer, Phys. Rev. B 49, 6457 (1994)]. Substantial increases of the positron lifetime τ were observed for Ti65.6Al34.4 and Ti77.1Al22.9 in the temperature range T(approximately-greater-than)1200 K where thermal vacancy concentrations above the detection limit of positron annihilation are expected from the model calculations for the α2 phase. Within the high-temperature increase of the positron lifetime in the α2 and the β phase single-component positron lifetime spectra were observed. This behavior is in contrast to the two-component spectra observed conventionally at intermediate positron trapping rates and is attributed to a fast detrapping and retrapping of positrons at vacancies due to a low positron–vacancy binding energy. For this case, a vacancy formation enthalpy of HFV=(1.55±0.2) eV in α2Ti65.6Al34.4 and HFV=(1.8±0.2) eV in βTi77.1Al22.9 can be derived. These results are discussed in the context of recent 44Ti tracer diffusion studies. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...