ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 88 (2000), S. 764-777 
    ISSN: 1437-3262
    Keywords: Key words Neoproterozoic ; Dokhan volcanics ; Egypt ; Geochemistry ; Petrogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The Neoproterozoic Dokhan volcanics of the Fatira area in eastern Egypt comprise two main rock suites: (a) an intermediate volcanic suite, consisting of basaltic andesite, andesite, dacite, and their associated pyroclastic rocks; and (b) a felsic volcanic suite composed of rhyolite and rhyolitic tuffs. The two suites display well-defined major and trace element trends and a continuum in composition with wide ranges in SiO2 (54–76%), CaO (8.19–0.14%), MgO (6.96–0.04%), Sr (983–7 ppm), Zr (328–95 ppm), Cr (297–1 ppm), and Ni (72–1 ppm). They are enriched in LILEs (Rb, Ba, K, Th, Ce) relative to high field strength elements (Nb, Zr, P, Ti) and show strong affinity to calc-alkaline subduction-related rocks. However, their undeformed character, their emplacement temporally and spatially with post-orogenic A-type granite, and their high Zr/Y values suggest that their emplacement follow the cessation of subduction in eastern Egypt in an extensional-related within-plate setting. Major and trace element variations in the intermediate volcanics are consistent with their formation via partial melting of an enriched subcontinental lithospheric mantle source followed by a limited low-pressure fractional crystallization of olivine and pyroxene before emplacement. The LILE enrichment relative to HFSE is attributed to the inheritance of a subduction component from mantle material which constituted the mantle wedge during previous subduction events in eastern Egypt. The evolution of the whole volcanic spectrum was governed mainly by crystal/melt fractionation of amphibole, plagioclase, titanomagnetite, and apatite in the intermediate varieties and plagioclase, amphibole, biotite, Fe–Ti oxides, apatite, and zircon in the felsic varieties. At each stage of evolution, crystal fractionation was accompanied by variable degrees of crustal contamination.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...