ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 52 (1990), S. 286-301 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Landsat Thematic Mapper (TM) images and Space Shuttle color photograph have been used to make a synoptic study of the volcanoes of southern Peru (∼14°–17° S), the northernmost portin of the Central Volcanic Zone (CVZ ∼14°–28° S) of the Andes. Apart from providing consistent coverage, the chief merit of the TM for this study has been the spatial resolution provided by the ∼30-m pixel size. The optimal ∼20-m resolution, variable lighting and viewing geometry, and stereo capability of the Shuttle photography provided an invaluable ancilliary data set. At the resolution available, subtle glacial-morphological features such as valley and terminal moraines can be confidently identified, and these features have been used to determine the relative ages of volcanoes. Volcanoes have been classified as potentially active if they have; (i) a well-preserved summit crater, (ii) pristine lava flow texture and morphology, (iii) flank lava flows with low albedo, and (iv) evidence of postglacial (〈10 000 years) activity. Eight major volcanoes are postulated to be potentially active. Most are large, dominantly andesitic, composite cones with edifice heights of up to 2500 m; some of which threaten nearby settlements. One of them, Sabancaya, was active as recently as July 1988. Other, little-known, postglacial volcanic features include Huaynaputina, site of a major explosive rhyolitic eruption in 1600 a.d., and several fields of monogenetic scoria cones and lava flows. The active volcanic front is some 200 km east of the Peru-Chile trench, and the volcanoes lie on a trenchparallel trend oblique to the EW subduction. This narrow volcanic zone is thought to reflect the steep dip of the Nazca plate through the zone of magma generation. The break in the trend of the volcanic front in the northern extremity of the volcanic zone is thought to reflect the complexity of the crustal stress field above a major segment boundary in the subducting plate. The fields of mafic monogenetic centers also occur in this region. In comparison with the southern part of the CVZ, the general paucity of older volcanic edifices north of ∼17° S suggests a more recent onset of volcanism north of this latitude probably resulting from the oblique subduction of the Nazca ridge and the consequent northward migration of its intersection with the Pere-Chile trench. This, coupled with the lack of any large silicic caldera systems and youthful dacite domes, like those found further south, suggest that there are real differences between the volcanic evolution of different parts of the CVZ.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...