ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 137 (1977), S. 225-229 
    ISSN: 1432-2048
    Keywords: Calcium Ions ; Membrane potential ; Nitella ; Phytochrome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Isolated internodes of Nitella (N. opaca, N. flexilis) and Nitellopsis spec. were punctured with single microelectrodes and their membrane potentials were recorded continuously during various light treatments. In red light the initial response was always a depolarization. This depolarization began with a lag-time of 0.4-3.5s and reached a steady state within 1–2 min of continuous illumination. Repolarization began within several seconds after turning off the light. The magnitude of the red-light-induced depolarization increased with the Ca2+-concentration of the medium. The largest depolarizations were recorded in 5 m mol l-1 Ca2+. Ca2+ could not be replaced in this function by Na+, Mg2+, La3+ or mannitol. Far-red light alone had no effect on the resting membrane potential. Far-red light applied immediately after red light accelerated the repolarization of the membrane potential. Far-red light applied simultaneously with red light reduced the amount of depolarization and increased the rate of repolarization. The results indicate that phytochrome and Ca2+ are involved in the light-induced depolarization of the membrane. They are consistent with the hypothesis that phytochrome may act by triggering a Ca2+-influx at the plasma membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...