ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 22 (1969), S. 83-126 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract 91 biotites (53 from granites, 35 from highly metamorphic gneisses, 3 from redwitzites) were separated and analyzed for Fe, Mn, Zn, Cl, Sn, Ni, Co, Or, Cu, V, Mo, Pb. Biotites from gneisses contain much more Ni, Co, Cr, V but less Fe, Mn, Zn than those from granites. However, the distinction between biotites from gneisses and from granites on the basis of these elements is not certain. If a gneiss undergoes anatexis, the contents of Ni, Co, Cr, V, Zn and Sn of the preexistent biotite fractionate: Zn, Sn and Pe enter the anatectic melt readily while Ni, Co, Cr and V concentrate in the remaining matter (restite). Ni, Co, Cr and V are strongly positively correlated with one another but negatively with Fe and Zn, the latter being positively correlated with Pe. The chemical composition of biotites from granites depends not only on a potential degree of secondary decomposition into chlorite and muscovite but much more on the percentage of biotite in the rock: The more biotite, the higher the content of Ni, Co, Cr, V and the lower Fe, Zn and Sn in the biotite. Thus, it is possible to distinguish between normal and abnormal concentrations of an element in a biotite and in a rock. This might be useful in geochemical prospecting. Abnormal high concentrations of Sn and Zn were found in biotites from some granites which are connected with mineralizations of these elements. It is impossible hitherto to gain informations about the history and the parental material of a granitic magma from the minor elements in the rock or the biotite because their concentrations depend on how much biotite could be incorporated by the melt. The distribution coefficient of Cl between the lattice of 4 biotites and their fluid inclusions was determined to be 0,08.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...