ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 21 (1969), S. 157-202 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The diffraction, n.q.r. and optical data on plagioclase feldspars are used to derive kinetic interpretations of structural changes induced by laboratory heat treatment and by geological processes. For anorthite, the Si, Al configuration is essentially ordered except for unusual transient processes. Cooperation between Ca atoms, and random nucleation, produces a domain texture in the primitive structure which is highly sensitive to temperature. The rapid inversion from the primitive to the body-centered structure is explained by increasingly rapid “rattling” of the Ca ions in the interstices of the semi-flexible alumino-silicate framework. The weakening of “b” reflections at higher temperatures is ascribed to incipient Si, Al disorder associated with irregular vibration of the alumino-silicate framework and the Ca atoms. Quenching phenomena are explained by variation of the domain boundary texture inherited from disorder at high temperature. For albite, the Si, Al configuration changes sluggishly from an ordered to a disordered pattern, and vice versa. Kinetic data are reinterpreted using a model in which the cell dimensions depend on local rather than distant order: the major change in distant order is deduced to occur at 450–600° C. Sodic plagioclase grown at high temperature shows distant disorder of the atoms, but cell dimensions suggest development of strong local order for calcic compositions. Low-entropy plagioclases of intermediate composition show complex intergrowths and domain structures because of kinetic barriers to atomic diffusion. X-ray diffraction data for slowly-cooled specimens are consistent with nucleation of albite- and anorthite-like regions from a high-temperature disordered phase. Electrostatic energy calculations show that Na and Ca atoms, although they face smaller energy barriers for diffusion, cannot form domains until the Si and Al atoms have moved jointly. The Si, Al ordering patterns of low albite and anorthite are topologically incompatible in a continuous framework if oxygen is not to be bonded to two Al. Therefore domains of low-albite and anorthite must be separated by disordered boundaries. For intermediate compositions, An15-An75, domains remain small. The anorthite-like domains probably form at higher temperatures than the albite-like domains. The latter tend to be about the same size for all bulk compositions. The atomic positions are influenced by neighboring atoms. Upon heating rapidly, Si and Al atoms remain in position and provide a memory for reformation of an identical structure upon cooling. The framework changes shape, and some Na, Ca atoms inter-diffuse to yield a quasi-homogeneous structure with a diffraction pattern which qualitatively approaches that of high albite. Upon prolonged heating at high temperature, Si, Al atoms inter-diffuse producing nonquenchable changes to the high-albite structure. At Na-rich bulk compositions, some domains of low albite grow into large lamellae while others remain small in contact with anorthite domains producing alternate lamellae of intermediate structure type; hence the peristerite intergrowth. A similar but opposite process could cause an intergrowth of lamellae of anorthite structure interposed with an intermediate type structure. A unique low plagioclase series is not expected. Plagioclases of intermediate composition trend towards slightly different endproducts depending on the details of the cooling history. Breaks and bends in plots of physical properties, and intergrowths for certain specimens, depend on special compositional, growth and annealing factors. The intergrowth responsible for iridescence of intermediate plagioclase is ascribed to Na, K segregation prior to development of the complex domain structure. Prolonged annealing at high temperature in a dry environment is suggested. It is futile to attempt to describe low entropy plagioclases in terms of classical thermodynamics: only a kinetic interpretation based on atomic and sub-microscopic textural factors can be viable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...