ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The petrology and U-Pb geochronology of pelitic migmatite and calc-silicate gneiss reveal a detailed prograde to post-peak metamorphic thermal history for a single outcrop of Paleoproterozoic supracrustal rocks in the eastern part of the Grand Canyon. Metamorphic monazite from paleosomal pelitic schist grew on the prograde path beginning at about 1708 Ma and continued to grow until about 1697 Ma. The U-Pb dates for magmatic xenotime and monazite from peraluminous granite and pegmatite leucosomes indicate that partial melting, which involved the breakdown of muscovite to sillimanite, commenced at about 1702 Ma, prior to the metamorphic peak. Partial melting continued until about 1690 Ma, the youngest U-Pb date from magmatic monazite in the leucosomes. Field and petrographic evidence, as well as inheritance patterns in monazites from the leucosomes, suggest that some of the leucosomes appear to represent in situ partial melts that did not escape the source region. Between 1702 and 1690 Ma, the migmatite package heated to peak metamorphic conditions of about 720 °C and 6 kbar, cooled to about 675 °C at a cooling rate 〉30 °C/million years, and decompressed to about 4 kbar. The U-Pb geochronological data for metamorphic titanite from a calc-silicate gneiss exhibit a clear relationship between grain size and the 207Pb/206Pb date indicating that the titanite crystals record cooling ages. These data, combined with the titanite Pb diffusion data of Cherniak (1993), yield a cooling rate of 5.4−0.9 +1.7 °C/million years, integrated over the interval 1690 to 1676 Ma and suggest that by 1675 Ma, the cooling rate slowed to less than 2 °C/million years. The rapid decompression during the peak of metamorphism and the change in cooling rate immediately following peak metamorphism are interpreted to reflect large-scale tectonic processes associated with the accretion of juvenile crust to the margin of Laurentia. Juvenile arc crust appears to have been assembled, accreted and stabilized into Laurentian lithosphere in less than 30 million years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...