ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 102 (1989), S. 429-453 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A wide variety of rock types are present in the O'Leary Peak and Strawberry Crater volcanics of the Pliocene to Recent San Francisco Volcanic Field (SFVF), AZ. The O'Leary Peak flows range from andesite to rhyolite (56–72 wt % SiO2) and the Strawberry Crater flows range from basalt to dacite (49–64 wt % SiO2). Our interpretation of the chemical data is that both magma mixing and crustal melting are important in the genesis of the intermediate composition lavas of both suites. Observed chemical variations in major and trace elements can be modeled as binary mixtures between a crustal melt similar to the O'Leary dome rhyolite and two different mafic end-members. The mafic end-member of the Strawberry suite may be a primary mantle-derived melt. Similar basalts have also been erupted from many other vents in the SFVF. In the O'Leary Peak suite, the mafic end-member is an evolved (low Mg/(Mg+ Fe)) basalt that is chemically distinct from the Strawberry Crater and other vent basalts as it is richer in total Fe, TiO2, Al2O3, MnO, Na2O, K2O, and Zr and poorer in MgO, CaO, P2O5, Ni, Sc, Cr, and V. The derivative basalt probably results from fractional crystallization of the more primitive, vent basalt type of magma. This evolved basalt occurs as xenolithic (but originally magmatic) inclusions in the O'Leary domes and andesite porphyry flow. The most mafic xenolith may represent melt that mixed with the O'Leary dome rhyolite resulting in andesite preserved as other xenoliths, a pyroclastic unit (Qoap), porphyry flow (Qoaf) and dacite (Darton Dome) magmas. Thermal constraints on the capacity of a melt to assimilate (and melt) a volume of solid material require that melt mixing and not assimilation has produced the observed intermediate lavas at both Strawberry Crater and O'Leary Peak. Textures, petrography, and mineral chemistry support the magma mixing model. Some of the inclusions have quenched rims where in contact with the host. The intermediate rocks, including the andesite xenoliths, contain xenocrysts of quartz, olivine and oligoclase, together with reversely zoned plagioclase and pyroxene phenocrysts. The abundance of intermediate volcanic rocks in the SFVF, as observed in detail at O'Leary Peak and Strawberry Crater, is due in part to crustal recycling, the result of basalt-driven crustal melting and the subsequent mixing of the silicic melts with basalts and derivative magmas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...