ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 95 (1974), S. 13-27 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1. Spike responses of single optic tectal units to plane polarized light have been recorded with extracellular electrodes in the goldfish. Responses to a series of eight 500 msec flashes were summed and the quantitative effects ofe-vector direction studied over 4–5 log units of intensity with white light and narrow spectral bands of equal quantal content at 460, 540 and 620 nm. 2. As previously reported all or nearly all tectal cells tested (115) were sensitive to the direction of the stimulus' polarization plane. Control experiments with a thin high order birefringent retarder next to the cornea and acting as a pseudo depolarizer provided further proof that thee-vector discrimination found in the optic tectum (as well as the previously reported oriented behavior to polarized light in fish) depends on an intraocular analyzer. 3. Systematic study of tectal cells has been made at various depths and in all directly accessible areas. No localized or differential effects of recording depth one-vector discrimination have been found. However, both directions of maximum response and degree of polarized light sensitivity (PLS) show distinctive patterns over the tectal area. 4. On the basis of established tectal projection maps these data show that preferred retinale-vector directions are tangentially arranged around the eye axis when the stimulus is axial. Distribution of this angular sensitivity seems continuous without discrete channels favoring particular polarization planes. 5. Sensitivity (determined from intensity response curves) is minimal in the center of the retina for an axial stimulus and increases peripherally out to 50–60° or more off axis. Sensitivity ratios of 4–6 are common and much larger ones have been occasionally recorded. 6. Shifting the direction of stimulus from axial to 45° and 60° upward from the axis proved that retinal patterns of preferrede-vector directions and sensitivities are symmetrical relative to the beam axis rather than the anatomical eye axis. Therefore individual tectal cells and before them their retinal receptor elements show different directions ofe-vector preference and different PLS ratios depending on the stimulus configuration. 7. Intensity response curves determined with the red, green and blue narrow spectral bands were essentially superimposable. Therefore, we have no evidence that there is any special interaction of λ and PLS. 8. The effects of stimulus intensity and retinal adaptation on the IR curves do not indicate any particular selective effects. Substantial polarized light sensitivity was present in both the light adapted and dark adapted state. PLS ratios in various cases were (1) about the same at different intensity levels or (2) greater at low than high intensities or (3) greater at high than low intensities. 9. We conclude that linearly polarized light evokes a large entoptic image in the goldfish eye. Two opposite light sectors perpendicular to thee-vector alternate with two dark sectors parallel to thee-vector. Both Haidinger's brushes and Boehm's brushes in human vision show some similarities but also some important differences. The goldfish PL image is achromatic, weak or absent axially and strong peripherally. Also the contrast between the sectors does not depend on movement of the stimulus on the retina to prevent fading as it does in both of the other phenomena. 10. The most likely mechanism for the observed PLS in the goldfish eye is either differential scattering intraocularly or oblique entry of light into the receptor outer segments. Yet present data prevent a firm choice between them.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...