ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Key words Mitochondrial translation ; RNA binding ; Isocitrate dehydrogenase ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Krebs cycle NAD+-isocitrate dehydrogenase (Idh) binds to the 5-UTRs of all mitochondrial mRNAs in Saccharomyces cerevisiae. We hypothesize that this leader-binding activity plays a role in translational regulation, thereby linking mitochondrial biogenesis to the need for respiratory function. Analysis of effects of leader binding on mitochondrial translation is complicated by the involvement of the enzyme in mitochondrial metabolism. We have therefore searched for an Idh altered in RNA binding, but retaining full enzyme activity. Idh from Kluyveromyces lactis and Schizosaccharomyces pombe was partially purified and examined for the ability to bind Cox2 mRNA. Sch. pombe Idh, like the S. cerevisiae enzyme, has high affinity for both its own, K. lactis and S. cerevisiaeCOX2 leaders. In contrast, Idh purified from K. lactis shows only low affinity for all mRNAs tested. To determine what distinguishes K. lactis Idh from S. cerevisiae Idh, genes encoding the two subunits of Idh in K. lactis were cloned and sequenced. Sequence comparison revealed high levels of similarity throughout the proteins, in particular in regions involved in enzyme activity, co-factor and regulator binding. Non-conserved residues between the subunits from the two yeasts are candidates for involvement in the interaction with RNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...