ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0916
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Notes: Abstract Integrable 1+1 dimensional systems associated to linear first-order matrix equations meromorphic in a complex parameter, as formulated by Zakharov, Mikhailov, and Shabat [1−3] (ZMS) are analyzed by a new method based upon the “soliton correlation matrix” (M-matrix). The multi-Bäcklund transformation, which is equivalent to the introduction of an arbitrary number of poles in the ZMS dressing matrix, is expressed by a pair of matrix Riccati equations for theM-matrix. Through a geometrical interpretation based upon group actions on Grassman manifolds, the solution of this system is explicitly determined in terms of the solutions to the ZMS linear system. Reductions of the system corresponding to invariance under finite groups of automorphisms are also solved by reducing theM-matrix suitably so as to preserve the class of invariant solutions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...