ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The effects of elevated atmospheric SO 4 2− deposition on S cycling in forest soils were assessed in an irrigation experiment using stable S isotopes. Over a period of 20 months, core lysimeters of five acidic forest soils from Southern Germany with different parent material and pedogenesis were irrigated with solutions chemically similar to canopy throughfall. Sulfate deposition in three experimental variants corresponded to 23, 42 and 87 kg S ha−1 yr−1. The SO 4 2− used for irrigation had aδ 34S ratio of +28.0‰ CDT (Canon Diablo Troilite standard), differing by more than +25‰ from natural and anthropogenic S in Southern Germany. A combination of chemical and isotopic analyses of soil and seepage water samples was used to elucidate the fluxes and transformations of simulated wet SO 4 2− deposition in each soil core. Retention of experimentally deposited S ranged from 57±5% in coarse-grained soils low in sesquioxides and clay, to 80±8% in loamy soils with high sesquioxide content. The sesquioxide content proved to be the major factor governing S retention. The ratio of S retained as inorganic SO 4 2− (mainly by adsorption) to that incorporated into organic compounds (presumably by microbial synthesis) ranged from 2 to 4. For the organic S pool, the amount of S retained as C-bonded S exceeded by far that immobilized as ester sulfate in four of the five soils. Application of34S-enriched SO 4 2− appears to be a suitable experimental tool to assess fluxes and transformations of deposited S in forest soils, if aerobic conditions are maintained. In contrast to radioactive S tracers, the concept should be applicable not only in laboratory and lysimeter experiments, but also in long term studies of whole forest ecosystems (e.g., experimental watersheds).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...