ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 31 (1998), S. 39-66 
    ISSN: 1573-1634
    Keywords: network model ; biofilm ; biobarrier ; permeability ; Monod kinetics ; adsorption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract We demonstrate how a network model can predict porosity and permeability changes in a porous medium as a result of biofilm buildup in the pore spaces. A biofilm consists of bacteria and extracellular polymeric substances (EPS) bonded together and attached to a surface. In this case, the surface consists of the walls of the porous medium, which we model as a random network of pipes. Our model contains five species. Four of these are bacteria and EPS in both fluid and adsorbed phases. The fifth species is nutrient, which we assume to reside in the fluid phase only. Bacteria and EPS transfer between the adsorbed and fluid phases through adsorption and erosion or sloughing. The adsorbed species influence the effective radii of the pipes in the network, which affect the porosity and permeability. We develop a technique for integrating the coupled system of ordinary and partial differential equations that govern transport of these species in the network. We examine ensemble averages of simulations using different arrays of pipe radii having identical statistics. These averages show how different rate parameters in the biofilm transport processes affect the concentration and permeability profiles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...