ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 19 (1980), S. 509-532 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Detailed measurements of the structure of thermals throughout the convective boundary layer were obtained from the NCAR Electra aircraft over the ocean during the Air Mass Transformation Experiment (AMTEX). Humidity was used as an indicator of thermals. The variables were first high-pass filtered with a 5 km cutoff digital filter to eliminate mesoscale variations. Segments of the 5 min (30 km length) horizontal flight legs with humidity greater than half the standard deviation of humidity fluctuations for that leg were defined as thermals. This was found to be a better indicator of thermals than temperature in the upper part of the boundary layer since the temperature in a thermal is cooler than its environment in the upper part of the boundary layer. Using mixed-layer scaling, the normalized length and number of thermals were found to scale with the 1/3 and -1/3 powers, respectively, of normalized height, while vertical velocity and temperature scaled according to similarity predictions in the free convection region of the surface layer. The observational results presented here extend throughout the entire mixed layer. Using these results in the equation for mean updraft velocity of a field of thermals, the sum of the vertical pressure gradient and edge-effect terms can be estimated. This residual term is found to be important throughout most of the boundary layer. The magnitude of the divergence of vertical velocity variance within a thermal is found to be larger than the magnitude of the mean updraft velocity term throughout most of the mixed layer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...