ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Wireless networks 5 (1999), S. 95-109 
    ISSN: 1572-8196
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Computer Science
    Notes: Abstract We introduce a stable multiple access protocol for broadcast channels shared by bursty stations, which we call CARMA-NTQ (for collision avoidance and resolution multiple access with non-persistence and transmission queues). Like previous efficient MAC protocols based on tree-splitting algorithms (e.g., DQRAP), CARMA-NTQ maintains a distributed queue for the transmission of data packets and a stack for the transmission of control packets used in collision resolution. However, CARMA-NTQ does not require the mini-slots commonly used in protocols based on collision resolution. CARMA-NTQ dynamically divides the channel into cycles of variable length; each cycle consists of a contention period and a queue-transmission period. The queue-transmission period is a variable-length train of packets, which are transmitted by stations that have been added to the distributed transmission queue by successfully completing a collision-resolution round in a previous contention period. During the contention period, stations with packets to send compete for the right to be added to the data-transmission queue using a deterministic first-success tree-splitting algorithm, so that a new station is added to the transmission queue. A lower bound is derived for the average throughput achieved with CARMA-NTQ as a function of the size of the transmission queue and the number of queue-addition requests that need to be resolved. This bound is based on the upper bound on the average number of collision resolution steps needed to resolve a given number of queue-add requests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...