ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 141 (1993), S. 631-642 
    ISSN: 1420-9136
    Keywords: Thin film ; diffusion coefficients ; ion microprobe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Few diffusion coefficient values have been measured for silicate minerals at pertinent geologic conditions because of experimental restrictions. Until recently, analysis of diffusion couples was conducted principally with electron microprobes which have rather poor spatial resolution (micrometer scale). Ion microprobe analyses, however, eliminate many of the previous experimental restrictions; in depth profile mode they have excellent spatial resolution (tens of angstroms) and diffusion couples can be analyzed normal to the interface. Diffusion couples analyzed by ion microprobe must be well-defined and uniform; previous methods using solution precipitates to form the diffusion couples were heterogeneous and had limited success. A new approach, the thermal evaporation of25MgO under high vacuum onto a crystalline substrate (oxide, silicate), produces a 1000 Å thick25MgO x (x〈1) thin film. This method yields an excellent diffusion couple for low-temperature diffusion experiments. Diffusion anneal experiments using this approach for garnet provide a Mg self-diffusion coefficient ofD=0.60±0.09×10−21 m2/s at 1000°C (logFO2=−11.3,P=1 atm,X Almandine=0.24).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...