ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1349-1359 
    ISSN: 0887-6266
    Keywords: reaction-induced phase separation ; polysulfone-epoxy blends ; epoxy-anhydride networks ; polysulfone-modified epoxies ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The reaction-induced phase separation in a blend of a commercial polysulfone (PSu) with diepoxide-cyclic anhydride monomers, was studied. The diepoxide was based on diglycidylether of bisphenol A (DGEBA) and the hardener was methyl tetrahydrophthalic anhydride (MTHPA), used in stoichiometric proportion. Benzyldimethylamine (BDMA) was used as initiator. PSu had no influence on the polymerization kinetics, the gel conversion, and the overall heat of reaction per epoxy equivalent. A kinetic model including initiation, propagation, and termination steps was used to estimate the distribution of linear and branched species in the first stages of the chain-wise copolymerization. This distribution, together with the PSu distribution, were taken into account in a thermodynamic model of the blend. The interaction parameter was fitted from experimental determinations of conversions at the start of phase separation, obtained under different conditions. The thermodynamic model was used to explain the complex morphologies developed in materials containing different PSu concentrations as well as their dynamic mechanical response. The shift in glass transition temperatures was explained by the fractionation of different species during the phase separation process. Phase inversion produced a significant decrease of the elastic modulus in the glassy state and a thermoplastic-like behavior of the material in the rubbery region. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1349-1359, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...