All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Methods are reported for construction of closed-form optical potentials that provide useful L2-basis-set approximations to the discrete and continuum Schrödinger states of self-adjoint Hamiltonian operators. The potentials are obtained employing information from a finite (Lanczos) reference space only, but nevertheless correspond to explicit summation over an infinite-dimensional remainder space. Connections are indicated between the Stieltjes-Tchebycheff orbital solutions of the resulting optical-potential Schrödinger problem and previously described corresponding moment-theory approximations to spectral densities and distributions. Use of a Lanczos basis insures that the orbital eigenvalues are generalized Gaussian or Radau quadrature points of the spectral density, and that their (reciprocal) norms provide the associated quadrature weights. Convergence of the orbitals in the limit of high order is obtained to Schrödinger eigenstates of finite norm in the discrete spectral region, and to scattering states of improper (infinite) norm in the essential portion of the spectrum. In finite orders the spatial characteristics of the Stieltjes-Tchebycheff orbitals correspond to spectral averages in the neighborhoods of the quadrature points over the correct Schrödinger states. Explicit closed-form expressions are obtained for the spectral content of individual orbitals in terms of orthogonal polynomials without reference to the correct Schrödinger states. A computational application to regular Coulomb l waves illustrates the nature and convergence of the development.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...