ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Liebigs Annalen 1999 (1999), S. 2609-2621 
    ISSN: 1434-193X
    Keywords: Amino acids ; Isotopic labelling ; Ethyl benzoate ; Benzonitrile ; Sodium phenylpyruvate ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A synthetic route to stable-isotope-substituted L-phenylalanine is presented, which allows the introduction of 13C, 15N, and deuterium labels at any position or combination of positions. For labelling of the aromatic ring, a synthetic route to ethyl benzoate (or benzonitrile) has been developed, based on the electrocyclic ring-closure of a 1,6-disubstituted hexatriene system, with in situ aromatization by elimination of one (amino) substituent. Several important (highly isotopically enriched) synthons have been prepared, namely benzonitrile, benzaldehyde, ethyl benzoate, and ethyl diphenyloxyacetate. Labelled L-phenylalanines have been synthesized from both aromatic precursors by initial conversion into sodium phenylpyruvate and subsequent transformation of this intermediate into the L-α-amino acid by an enzymatic reductive amination reaction. In this manner, highly enriched phenylalanines are obtained on the 10-gram scale and with high enantiomeric purities (≥ 99% ee). The method has been validated by the synthesis of [1′-13C]-L-Phe and [2-D]-L-Phe. In addition, two methods are described for the introduction of isotopes into L-tyrosine starting from the isotopically enriched precursors benzonitrile and ethyl benzoate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...